• Member Login
  • |
  • Join Now
PESA - Energy Geoscience

Promoting Professional and Technical Excellence in Energy Geoscience – Networking, On-going Professional Education, Monthly Technical Meetings

  • Home
  • About
    • About PESA
    • Objectives
    • PESA History
    • PESA Affiliates
    • Constitution and Rules
    • Strategic Plan
  • Events
    • Online
    • NSW / ACT
    • QLD
    • SA / NT
    • VIC / TAS
    • WA
    • Industry
    • Social
    • Past Events
  • Membership
    • Join Us
    • APPEA Conference Discounts
    • AEGC 2025 Travel Bursaries
    • PESA Membership Awards
  • Latest News
    • All News
    • Feature Articles
    • Industry
    • Company Updates
    • Tech Talk (public)
    • PESA Branch Activities
  • Library
    • Technical Library
    • PESA Gazette
    • Webinars
    • PESA News Magazine
    • Knowledgette Recordings
  • Scholarships
  • Employment
    • View Job Opportunities
    • Submit Job
  • Contact

Surface interaction changes in minerals for underground hydrogen Storage Effects of CO2 cushion gas

04/06/2025 by Frances

Surface interaction changes in minerals for underground hydrogen Storage Effects of CO2 cushion gas

 

Download Section

Please log in to download this file.

Alternatively, you can search for this item and individually purchase it from the PESA collection at AAPG DataPages

PESA collection at AAPG DataPages

Publication Name: PESA Gazette

Authors: Hamid Esfandyari, Alireza Safari, Ali Hashemi, Aliakbar Hassanpouryouzband, Manouchehr Haghighi, Alireza Keshavarz, Abbas Zeinijahrom

Publication Issue: January 2025

Date Published: January 2025

Number of Pages: 2

https://doi.org/10.36404/MEXS0059

Abstract:

Hydrogen (H2) offers a promising solution for the energy transition but storing it on a large scale at the surface poses significant technical and environmental challenges. Underground formations provide a practical alternative for large-scale H2 storage, yet understanding H2 behavior under various subsurface conditions is crucial for optimizing storage capacity and efficiency, which are influenced by rock properties such as wettability. This study addresses the gap in literature regarding the wettability of different minerals when CO2 was injected with H2 as a cushion gas. We examined the wettability of various mineral rocks in realistic subsurface circumstances. A series of wettability measurements were carried out using a captive drop instrument under high-pressure and high-temperature conditions, employing seven different minerals.

Tags: PESA Gazette

PESA - Energy Geoscience

PESA Energy Geoscience is a non-profit association of individuals involved in the exploration of oil and gas.

Connect with us

Subscribe to our newsletter and stay on the loop of what is happening in the field of Energy Geoscience and events near you.

pesa newsletter
* indicates required

PESA Energy Geoscience will use the information you provide on this form to be in touch with you and to provide updates and marketing. Please confirm you give us permission to contact you via your email address:

You can change your mind at any time by clicking the unsubscribe link in the footer of any email you receive from us. We will treat your information with respect. For more information about our privacy practices please visit our website. By clicking below, you agree that we may process your information in accordance with these terms.

We use Mailchimp as our marketing platform. By clicking below to subscribe, you acknowledge that your information will be transferred to Mailchimp for processing. Learn more about Mailchimp's privacy practices.

Copyright © 2025 PESA - Energy Geoscience. All Rights Reserved.

  • Advertise
  • Contact
  • Policies
  • Privacy
  • Terms & Conditions