• Member Login
  • |
  • Join Now
PESA - Energy Geoscience

Promoting Professional and Technical Excellence in Energy Geoscience – Networking, On-going Professional Education, Monthly Technical Meetings

  • Home
  • About
    • About PESA
    • Objectives
    • PESA History
    • PESA Affiliates
    • Constitution and Rules
    • Strategic Plan
  • Events
    • Online
    • NSW / ACT
    • QLD
    • SA / NT
    • VIC / TAS
    • WA
    • Industry
    • Social
    • Past Events
  • Membership
    • Join Us
    • APPEA Conference Discounts
    • AEGC 2025 Travel Bursaries
    • PESA Membership Awards
  • Latest News
    • All News
    • Feature Articles
    • Industry
    • Company Updates
    • Tech Talk (public)
    • PESA Branch Activities
  • Library
    • Technical Library
    • PESA Gazette
    • Webinars
    • PESA News Magazine
    • Knowledgette Recordings
  • Scholarships
  • Employment
    • View Job Opportunities
    • Submit Job
  • Contact

In situ Rb–Sr dating and trace element analysis of glauconite-rich strata from the Arumbera Sandstone, Amadeus Basin

07/07/2023 by Frances

In situ Rb–Sr dating and trace element analysis of glauconite-rich strata from the Arumbera Sandstone, Amadeus Basin

 

Download Section

Please log in to download this file.

Alternatively, you can search for this item and individually purchase it from the PESA collection at AAPG DataPages

PESA collection at AAPG DataPages

Publication Name: Central Australian Basins Symposium IV

Authors: Loyola, C, Farkas, J, Verdel, C, Gilbert, S , Holmes, L, Hissey, E, Loehr, S, Brock, G. Shields, G, Edgoose, C, Redaa, A, Blades, ML, and Collins, AS

Publication Volume: 1

Date Published: July 2023

Number of Pages: 4

https://doi.org/10.36404/SJYQ6489

Abstract:

The Rb-Sr dating technique is among the most widely used geochronological tool available in earth and planetary sciences. The method is based on the radioactive decay of 87Rb to 87Sr via a negative beta decay (the emission of an electron), with a half-life of 49.61 ± 0.16 Ga1. Traditionally rubidium-strontium dating has required the separation and acid digestion of mineral phases and/or bulk rocks, thus preventing high-resolution and micro-scale geochronology applications. Here we present results of the novel in-situ (laser-based) rubidium-strontium dating of selected mineral phases (i.e., glauconite and K-feldspar) in glauconite-rich strata of the Arumbera Sandstone from the northeast part of the Amadeus Basin in central Australia.

Tags: CABS

PESA - Energy Geoscience

PESA Energy Geoscience is a non-profit association of individuals involved in the exploration of oil and gas.

Connect with us

Subscribe to our newsletter and stay on the loop of what is happening in the field of Energy Geoscience and events near you.

pesa newsletter
* indicates required

PESA Energy Geoscience will use the information you provide on this form to be in touch with you and to provide updates and marketing. Please confirm you give us permission to contact you via your email address:

You can change your mind at any time by clicking the unsubscribe link in the footer of any email you receive from us. We will treat your information with respect. For more information about our privacy practices please visit our website. By clicking below, you agree that we may process your information in accordance with these terms.

We use Mailchimp as our marketing platform. By clicking below to subscribe, you acknowledge that your information will be transferred to Mailchimp for processing. Learn more about Mailchimp's privacy practices.

Copyright © 2025 PESA - Energy Geoscience. All Rights Reserved.

  • Advertise
  • Contact
  • Policies
  • Privacy
  • Terms & Conditions